The plastic injection molding process injects liquid material into a mold to cool into a part. It features four key steps: clamping, injection, cooling, and ejection.
With competitive price and timely delivery, DAYIN sincerely hope to be your supplier and partner.
Overall plastic injection molding is a fairly automated process, so little human labor is involved apart from supervision.
Plastic injection molding is used in all industries for applications from static-dissipating electronics housings to self-lubricating parts in the oil and gas industry. Some of the most common applications include:
Injection molding prototypes are cheaply produced, relatively short run groups of dozens of injection molded products created in design, testing, and development stages for testing and promotion. More specifically, a company will want to create prototypes to:
These parts are produced with less expense by using single cavity molds, cheaper materials for their tooling, and less automation in manufacturing them. Not all industries will create prototypes for injection molding; those with tight timelines or that use offshore manufacturers will often skip this step of the process.
However, some part types are best prototyped first. Companies creating small products like contact lens cases that will have many holes in a multicavity mold later will find prototyping more helpful before investing in molds with dozens of cavities. Additionally, companies with large amounts of regulation when creating parts at scale (such as those in the medical sector) use injection mold prototyping to create parts for research without having to go through the regulations and certifications processes required for products to be used on consumers. This allows them to avoid costly mistakes after having gone through the approval processes. Companies like Xometry with ISO certification can also do full production runs for medical companies.
Generally prototyped parts will be made from commodity plastics, like polycarbonate, nylon, polypropylene, and ABS , as well as elastomers like TPE, TPU, and SAN. Some resins require specialty molds as well. PEEK, for example, requires a heated mold instead of the more standard cooling mold, which only dissipates heat from liquid plastic instead of adding heat at first to keep it liquid.
Plastic injection molding types include a wide range from insert and single cavity molds to complex tooling like master unit die (MUD) molds. More specifically:
All plastic injection molding types involve the injection of melted plastic into a mold that is then cooled and ejected as a part. However, within this field there are more specific types of manufacturing, including overmolding, injection molding, and compression molding.
Products that are molded with plastic injection include furniture, car parts, food products, and more. More specifically:
Plastic injection molding is better than 3D printing for larger production runs, stronger parts, faster production, and a larger variety of materials that can be used, including fillers. Because injection molding’s manufacturing process simply involves the injection and cooling of plastic, a part can be formed within a few minutes at the most, as opposed to the layer-by-layer creation of a part via 3D printing. This makes it possible to make higher volumes of parts faster than a 3D printer, though building molds and other setup means that injection molding has a much longer original lead time. Parts are also stronger since they’re not reliant on the bonds between each layer of plastic, which is important for products like car bumpers. At the same time, nearly all plastics can be injection molded, while 3D printing plastic materials do not yet have the same diversity.
Plastic Injection Molding is environmentally friendly when compared to other plastic manufacturing processes. Since this technique only uses the amount of plastic needed to fill the mold, less material is wasted, especially when excess plastic from the sprue and runner is ground up and reused (which can be done multiple times if necessary). The process also generates fewer emissions and uses less energy compared to other processes.
However, the injection molding industry is so large that the field still uses large amounts of energy, and most plastics produce large amounts of emissions when created. Additional work can be done however to make this process more eco-friendly by optimizing product design, processes, efficiency in production runs, and energy conservation. There are also biodegradable plastics and fillers that can be used to make greener products.
The basics of Plastic injection molding machines consist of three major parts: the injection unit, the mold, and the clamping/ejector unit. We’ll focus on the injection mold tool components in the following sections, which break down into the sprue and runner system, the gates, two halves of the mold cavity, and optional side actions. You can learn more about the process of plastic injection molding basics through our more in-depth article Plastic Injection Molding Basics.
1. Mold Cavity
A mold cavity typically consists of two sides: an A side and B side. The core (B Side) is typically the non-cosmetic, interior side that contains the ejection pins that push the completed part out of the mold. The cavity (A Side) is the half of the mold which the molten plastic fills. Mold cavities often have vents to allow air to escape, which would otherwise overheat and cause burn marks on the plastic parts.
2. Runner System
The runner system is a channel that connects the liquified plastic material from the screw feed to the part cavity. In a cold runner mold, plastic will harden within the runner channels as well as the part cavities. When the parts are ejected, the runners are ejected as well. Runners can be sheared off through manual procedures like clipping with die cutters. Some cold runner systems automatically eject the runners and part separately using a three-plate mold, where the runner is partitioned by an additional plate between the injection point and the part gate.
Hot runner molds do not produce attached runners because feed material is kept in a melted state up to the part gate. Sometimes nicknamed “hot drops,” a hot runner system reduces waste and enhances molding control at an increased tooling expense.
3. Sprues
Sprues are the channel through which the molten plastic enters from the nozzle, and they typically intersect with a runner that leads to the gate where the plastic enters the mold cavities. The sprue is a larger diameter channel than the runner channel that allows the proper amount of material to flow through from the injection unit.
4. Gates
A gate is a small opening in the tool that allows molten plastic to enter the mold cavity. Gate locations are often visible on the molded part and are seen as a small rough patch or dimple-like feature known as a gate vestige. There are different types of gates, each one with its strengths and trade-offs.
5. Parting Line
The main parting line of an injection molded part is formed when the two mold halves close together for injection. It is a thin line of plastic that runs around the outside diameter of the component.
6. Side Actions
Side actions are inserts added to a mold that allow material to flow around them to form the undercut feature. Side actions must also allow for a successful ejection of the part, preventing a die lock, or a situation where the part or tool must be damaged to remove part. Because side actions do not follow the general tool direction, undercut features require draft angles specific to the action’s movement. Read more about common types of side actions and why they are used.
For simple A and B molds that do not have any undercut geometry, a tool can close, form, and eject a part without added mechanisms. However, many parts have design features that require a side action to produce features like openings, threads, tabs, or other features. Side actions create secondary parting lines.
The company is the world’s best plastic injection molding design supplier. We are your one-stop shop for all needs. Our staff are highly-specialized and will help you find the product you need.
Plastic injection molding machines are machines that heat and mix plastic pellets until they’re melted into a liquid, which is then sent through a screw and forced through an outlet into molds to solidify as plastic parts.
There are four basic types of molding machinery, classed around the power used to inject the plastic: hydraulic, electric, hybrid hydraulic-electric, and mechanical injection molders. Hydraulic machines, which use electric motors to power hydraulic pumps, were the first type of plastic injection molding machines. The majority of injection molding machines are still this type. However, electric, hybrid, and mechanical machinery has greater precision. Electric injection molders, using electricity-powered servo motors, consume less energy, as well as being quieter and faster. However, they’re also more expensive than hydraulic machines. Hybrid machinery uses the same amount of energy as electric models, relying on a variable-power AC drive that combines both hydraulic and electric motor drives. Finally, mechanical machines increase tonnage on the clamp through a toggle system to ensure flashing doesn’t creep into the solidified parts. Both these and electric machines are best for clean room work as there’s no danger of hydraulic system leaks.
Each of these machine types works best for different aspects, however. Electric machines are best for accuracy, while hybrid machines offer more clamping force. Hydraulic machinery also works better than the other types for the production of large parts.
In addition to these types, machines come in a range of tonnage from 5-4,000 tons, which are utilized depending on the viscosity of the plastic and parts that will be made. The most popularly used machines, however, are 110 ton or 250 ton machines. On average, larger injection molding machinery can cost from $50,000-$200,000 or more. 3,000 ton machines can cost $700,000. On the other end of the scale, a desktop injection molding machine with 5 tons of force can cost between $30,000-50,000.
Some of the most popular brands include:
Often a machine shop will only use one brand of injection molding machine, as the parts are exclusive to each brand- it costs heavily to change from one brand to another (the exception to this is mold components, which are compatible with different brands. Each brand’s machines will perform certain tasks better than others.
You can calculate plastic injection mold cost by adding together the initial and recurring costs in the formulas below. There is a range of factors that goes into the final injection molding cost, including:
For initial costs:
Startup Cost = tooling costs + mold and material setup time and labor (drying resin + hanging molds + arranging water lines and sensors + setting up cooling or gating systems + scrap rates)
Recurring costs:
Recurring costs = raw materials + piece price (setup fees + set scrap rates, 3-5% of total piece price + machine hourly rates, ~60% of final cost + plastic weight + mold maintenance fee + inspection requirements) + secondary operations + packaging + shipping
Initial startup costs are fewer in number, but they cost the most. Tooling costs include all of the factors that go into making the tooling for your parts, including the cavities and slides. Other one-time expenses are usually rolled up in piece price, including configuring the setup of your parts, and the time spent getting the molds and materials ready. This includes drying your resin, hanging molds, arranging waterlines and sensors, and setting up any specific cooling system or gating system. It will also include set scrap rates for purging the machines of previous plastics.
Recurring costs, on the other hand, include setup fees, raw materials, piece price, and any post-production requirements such as packaging or shipping. Setup fees are for the work to calibrate the machines when they’re first turned on- employees must run shots of plastic through the machine to get it working correctly. Raw materials include both plastic resins and additives. Not all parts require secondary operations, but some will need machining, sonic welding, marking, or other services. Often manufacturers will offer secondary services as an option. Packaging can range from the least expensive packaging used to ship the parts to you, up to end-user packaging.
Of all of these components of the final price, piece price is the most complicated. One of the most expensive factors in piece price is the set hourly rates for machinery; the time to form a part (made up of the injection, pack and hold, cooling, and ejection times) is one of the areas that must be best optimized. This is why mold cavitation, the amount of cavities that will create parts in each mold, is so important. There will also be a fee for the plastic weight, including both plastic that becomes parts and scrap plastic left over in the sprue and runners. Finally, mold maintenance fees will cover the cost of mold warranties, and additional inspection will also add cost.
Between runs, you’ll also incur some of the costs mentioned as one time costs above. Once a run is finished, manufacturers will clean and put your mold into storage with a crane or other equipment. Before the next run can start, the mold will have to be reinstalled in the machine, hooked back up to everything, and calibrated. You will also be charged again for purging other plastics from the system.
Calculating these plastic injection molding costs before ordering will enable you to get a more accurate estimate of the potential budget and help you to weigh your options with injection molding vs. other manufacturing methods.
Plastic injection molding is cheap for large production runs and other specific circumstances. While startup costs involving the creation of tooling are relatively high, the process itself is budget-friendly enough to lower the overall piece price as long as production runs are large enough.
In situations where you need thousands or hundreds of thousands of parts, the relatively minor expenses of running the process can drive the price per part down to a few cents per piece. This is especially true for simpler parts, as they will require less complex, and therefore less expensive molds. More complex part molds will feature parts like side actions, hot runners, manually trimmed gates, and water cooling lines. Additional costs can be saved when waste plastic is ground down and recycled.
For situations in which there will be changes to the part design, however, injection molding will get expensive quickly, as each new or modified mold is a significant cost. Small part runs will also cost a great deal more per part, as will smaller quantities of plastics, as buying in bulk lowers the cost of raw materials (if bulk plastic is not used in a timely manner, however, this cost benefit can be swallowed up by storage costs).
For more information see our article on Plastic Injection Molding Cost.
Depending on the material type, a plastic injection molding lifespan can last between 500 parts to over a million. Aluminum is often used for shorter injection molding lifespan, while longer lasting molds utilize heavier duty metals like steel. There is a wide range of steels used, some of which are abrasion resistant for tougher plastics and some of which are simply less expensive. The SPI (Society of the Plastics Industry) has set out guidelines for the different mold classifications depending on how long they’re supposed to last.
The injection molding industry often defines molds by their class. This goes from Class 105 rapid prototype molds that produce no more than hundreds of parts to Class 101 tools that produce millions of parts quickly. The number of parts a tool can produce before it wears down is known as the tool life.
The history of plastic injection molding has evolved from its beginnings as first new plastics and then new molding techniques were developed. In brothers John and Isaiah Wyatt patented the first injection molding machine to create billiard balls from celluloid instead of ivory. The original machine used a plunger to push the celluloid through a hot cylinder, which melted it, and into a mold. From there products including buttons, combs, and other household products started to be injection molded. Cellulose acetate was later developed as a less flammable alternative to celluloid, and additional thermoplastics (including PVC and polystyrene) were invented up until World War II to take advantage of this technology.
During WWII, plastic injection molding history continued to evolve and plastic materials had advanced enough to replace metal and rubber parts, which were in short supply during and after the war. In James Watson Hendry created an extrusion screw injection molding machine. The screw gave better control over the plastic and enabled better quality control. Hendry also created gas-assist injection molding which allowed companies to create more complex and bigger hollow parts.
Plastics continues to evolve into stronger properties until in the s plastic production had a bigger market share than steel. In the s aluminum molds also became popular, creating a faster, less expensive version of steel molds for certain applications.
The top three injection molding plastics in terms of cost and toughness include: polycarbonate, polypropylene, and nylon. These are also three of the six most popular plastic injection molding materials at Xometry, used because of their strong mechanical properties and inexpensiveness. In more detail:
Other commonly used plastics include thermoplastics such as polystyrene (PS), SAN, PVC, PET, PBT, PEI, PPS, PMMA, TPU and TPE. High-performance injection molding plastics like PEEK and PEI are more costly but offer the best heat resistance and stiffness.
Are you interested in learning more about oem children's tableware? Contact us today to secure an expert consultation!